On tests of treatment-covariate interactions: An illustration of appropriate power and sample size calculations

نویسنده

  • Gwowen Shieh
چکیده

The appraisals of treatment-covariate interaction have theoretical and substantial implications in all scientific fields. Methodologically, the detection of interaction between categorical treatment levels and continuous covariate variables is analogous to the homogeneity of regression slopes test in the context of ANCOVA. A fundamental assumption of ANCOVA is that the regression slopes associating the response variable with the covariate variable are presumed constant across treatment groups. The validity of homogeneous regression slopes accordingly is the most essential concern in traditional ANCOVA and inevitably determines the practical usefulness of research findings. In view of the limited results in current literature, this article aims to present power and sample size procedures for tests of heterogeneity between two regression slopes with particular emphasis on the stochastic feature of covariate variables. Theoretical implications and numerical investigations are presented to explicate the utility and advantage for accommodating covariate properties. The exact approach has the distinct feature of accommodating the full distributional properties of normal covariates whereas the simplified approximate methods only utilize the partial information of covariate variances. According to the overall accuracy and robustness, the exact approach is recommended over the approximate methods as a reliable tool in practical applications. The suggested power and sample size calculations can be implemented with the supplemental SAS and R programs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power and sample size calculations for generalized regression models with covariate measurement error.

Covariate measurement error is often a feature of scientific data used for regression modelling. The consequences of such errors include a loss of power of tests of significance for the regression parameters corresponding to the true covariates. Power and sample size calculations that ignore covariate measurement error tend to overestimate power and underestimate the actual sample size required...

متن کامل

A Comparison of Analysis of Covariate-Adjusted Residuals and Analysis of Covariance

Various methods to control the influence of a covariate on a response variable are compared. In particular, ANOVA with or without homogeneity of variances (HOV) of errors and Kruskal-Wallis (K-W) tests on covariate-adjusted residuals and analysis of covariance (ANCOVA) are compared. Covariate-adjusted residuals are obtained from the overall regression line fit to the entire data set ignoring th...

متن کامل

On power and sample size calculations for likelihood ratio tests in generalized linear models.

A direct extension of the approach described in Self, Mauritsen, and Ohara (1992, Biometrics 48, 31-39) for power and sample size calculations in generalized linear models is presented. The major feature of the proposed approach is that the modification accommodates both a finite and an infinite number of covariate configurations. Furthermore, for the approximation of the noncentrality of the n...

متن کامل

Covariate unit root tests with good size and power

The selection of the truncation lag for covariate unit root tests is analyzed using Monte Carlo simulation. It is shown that standard information criteria such as the BIC or the AIC can result in tests with large size distortions. Modified information criteria can be used to construct tests with good size and power. An empirical illustration is provided.

متن کامل

Goodness-of-fit processes for logistic regression: simulation results.

In this paper we use simulations to compare the performance of new goodness-of-fit tests based on weighted statistical processes to three currently available tests: the Hosmer-Lemeshow decile-of-risk test; the Pearson chi-square, and the unweighted sum-of-squares tests. The simulations demonstrate that all tests have the correct size. The power for all tests to detect lack-of-fit due to an omit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017